Eccentric figure-eight coils for transcranial magnetic stimulation.

نویسندگان

  • Masaki Sekino
  • Hiroyuki Ohsaki
  • Yoshihiro Takiyama
  • Keita Yamamoto
  • Taiga Matsuzaki
  • Yoshihiro Yasumuro
  • Atsushi Nishikawa
  • Tomoyuki Maruo
  • Koichi Hosomi
  • Youichi Saitoh
چکیده

Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain

Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...

متن کامل

Cerebellar Transcranial Magnetic Stimulation: The Role of Coil Geometry and Tissue Depth☆

BACKGROUND While transcranial magnetic stimulation (TMS) coil geometry has important effects on the evoked magnetic field, no study has systematically examined how different coil designs affect the effectiveness of cerebellar stimulation. HYPOTHESIS The depth of the cerebellar targets will limit efficiency. Angled coils designed to stimulate deeper tissue are more effective in eliciting cereb...

متن کامل

A Design of Array Transcranial Magnetic Stimulation Coil System

This research proposed a new design of helmet-shaped array transcranial magnetic stimulation coil system. It was constructed using several sagittal directional wires and several coronal directional wires. By varying the current direction and strength on each wire, this array coil system could be constructed into the circular coil and figure-eight coil of different size. Also, this proposed coil...

متن کامل

Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation

Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone co...

متن کامل

MEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION

Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectromagnetics

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2015